The Python Pandas DataFrame property iloc[]
is used to select data from a pandas dataframe Depending on their index. Thus, specific lines and columns of a dataframa can be visualized according to their position.
Web accommodation
Flexible, efficient and safe web accommodation
- SSL certificate and DDOS protection
- Data backup and restoration
- Assistance 24/7 and personal advisor
Pandas syntax iloc[]
Pandas iloc[]
Accepts integers who specify The elements to select in the DataFrame. General syntax for pandas DataFrame.iloc()
East :
DataFrame.iloc[selection]
python
Pandas iloc[]
Accepts several types of arguments: A single integer, a python list of whole, a slice object or a tuple with indices of lines and columns.
Use of pandas DataFrame.iloc[]
Pandas property behavior iloc[]
varies depending on the value you give it. Here are some practical examples to illustrate this point.
Selection of a specific line
We start by creating a dataframa with different people, their age as well as their place of residence:
import pandas as pd
# Création d'un DataFrame d'exemple
données = {'Nom': ['Anna', 'Bob', 'Charlie', 'David'],
'Âge': [28, 24, 22, 32],
'Ville': ['Paris', 'Marseille', 'Lyon', 'Toulouse']}
df = pd.DataFrame(données)
print(df)
python
The resulting dataframa looks like the following:
Nom Âge Ville
0 Anna 28 Paris
1 Bob 24 Marseille
2 Charlie 22 Lyon
3 David 32 Toulouse
Using iloc[]
you can now select any line by passing the desired line index:
# Sélection de la première ligne
résultat = df.iloc[0]
print(résultat)
python
In this example, the zero line (0) is selected. The result is data for Anna:
Nom Anna
Âge 28
Ville Paris
Name: 0, dtype: object
Selection of a specific line and column
If you want to specify not only the index of the line but also that of the column, simply pass these values to iloc[]
by separating them with a comma:
# Sélection de la première ligne et de la première colonne
résultat = df.iloc[0, 1]
print(résultat)
python
The call to Pandas iloc[]
Above allows you to select the zero line (0) and the first column (1). The result is therefore the age of Anna: 28.
Selection of several lines and columns with intervals (:
))
You can also select several lines and columns at the same time using Python slices. In a slice (start:stop
), the value stop
is excluded from the selection.
# Sélection des deux premières lignes et des deux premières colonnes
résultat = df.iloc[0:2, 0:2]
print(résultat)
python
The code output above is as follows:
Nom Âge
0 Anna 28
1 Bob 24
Here, the first two lines (0:2
) and the first two columns (0:2
) are selected. The resulting dataframa contains only the corresponding extracts.
Selection of specific lines and columns with lists
Several columns and lines can be selected using Python lists. The advantage of these lists is that they also make it possible to select non -consecutive lines and columns in the DataFrame:
# Sélection de la première et de la troisième ligne ainsi que de la deuxième et troisième colonne
résultat = df.iloc[[0, 2], [1, 2]]
print(résultat)
python
Here, the zero line and the second line ([0, 2]
) as well as the first and second column ([1, 2]
) are selected, which gives the following output:
Âge Ville
0 28 Paris
2 22 Lyon
In Python, iloc[]
is an essential tool for accessing data according to their position. It is often used in addition to loc[]which selects data by label.