Pandas DataFrame.loc[]
is a DataFrame property in the Python Pandas library used to select data from a dataaframa depending on labels. Thus, the lines and columns of a dataframe can be extracted in a targeted way.
Web accommodation
Flexible, efficient and safe web accommodation
- SSL certificate and DDOS protection
- Data backup and restoration
- Assistance 24/7 and personal advisor
Pandas syntax loc[]
Go to parameter to loc[]
there Selection of desired labels. For the rest, the syntax is very simple:
DataFrame.loc[selection]
python
With pandas loc[]
selection is mainly based on labels. The past parameter can therefore be a single label, a list or a beach of labels. It is also possible to use Boolean tables.
loc[]
vs. iloc[]
While Pandas DataFrame.loc[]
Select data based on labels, DataFrame.iloc, whose consonance is similar, is used to select data based on whole positions.
The following example makes it possible to illustrate the differences between these two parameters. First of all, we create a dataframe pandas:
import pandas as pd
# Exemple de DataFrame
data = {'Nom': ['Anna', 'Bob', 'Chris'], 'Âge': [23, 35, 30]}
df = pd.DataFrame(data)
print(df)
python
The resulting dataframa looks like the following:
Nom Âge
0 Anna 23
1 Bob 35
2 Chris 30
To extract « Anna » from DataFrame, Pandas loc[]
And iloc[]
can be used. The two methods give the same result, but loc[]
uses an index based on labels while iloc[]
uses a digital index.
# Utilisation de loc pour trouver l’étiquette
print(df.loc[0, 'Nom']) # Sortie : 'Anna'
# Utilisation de iloc pour trouver la position
print(df.iloc[0, 0]) # Sortie : 'Anna'
python
Pandas application DataFrame.loc[]
Pandas loc[]
help you Extract sub-assemblies from your dataframe. It may be one or more lines or columns: indeed, loc[]
can be used in different cases.
Single line selection
We will now examine an example of data with the following data:
import pandas as pd
data = {
'Nom': ['Anna', 'Bob', 'Chris'],
'Âge': [23, 35, 30],
'Ville': ['Paris', 'Lyon', 'Marseille']
}
df = pd.DataFrame(data)
print(df)
python
The resulting dataframa is as follows:
Nom Âge Ville
0 Anna 23 Paris
1 Bob 35 Lyon
2 Chris 30 Marseille
To select line data with index 1 (corresponding to Bob), Pandas are used loc[]
::
bob_data = df.loc[1]
print(bob_data)
python
The result is in line with expectations:
Nom Bob
Âge 35
Ville Lyon
Name: 1, dtype: object
Selection of several columns
Pandas DataFrame.loc[]
is useful for selecting a subset of columns. Using :
we select all the lines. The following code selects the columns « Name » and « City » for all lines:
nom_ville = df.loc[:, ['Nom', 'Ville']]
print(nom_ville)
python
The result is a subset of the original dataframa:
Nom Ville
0 Anna Paris
1 Bob Lyon
2 Chris Marseille
Conditional selection
With pandas loc[]
it is also possible to filter the lines according to a condition. To do this, simply use Boolean comparison operators. For example, in the following code, all people over the age of 25 must be filtered:
older_than_25 = df.loc[df['Âge'] > 25]
print(older_than_25)
python
The above code returns the following dataframa, which only contains data from people over 25 years old:
Nom Âge Ville
1 Bob 35 Lyon
2 Chris 30 Marseille